
Many applications in industry and engineering arise from
the flow of Newtonian and Non-Newtonian fluids. Authors
have been interested in such fields for the last few decades.
The problem of boundary layer flow over a cylinder, which
is our concern in this work, has many applications such as
glass fiber production, the drawing of wires, as well as plastic
and metallurgy industries. Sakiadis [1] was the first to study
boundary layer flow behavior on a cylinder moving in a
Newtonian fluid. He obtained a numerical solution using a
similarity transformation. Rotte and Beek have given Some
models for the calculation of heat transfer coefficients to a
moving continuous cylinder[2]. Ganesan and Loganathan [3]
have introduced the problem of radiation and mass transfer
effects on flow of an incompressible viscous fluid past a
moving vertical cylinder. Recently Ado-Eldahab and Salem
[4] have studied the flow and heat transfer of non-Newtonian
powerlaw fluid with diffusion and chemical reaction on a
moving cylinder. Amkadni and Azzouzi [5] have analyzed the
steady flow of an incompressible electrically conducting fluid
over a semi-infinite moving vertical cylinder in the presence
of a uniform transverse magnetic field. Elbashbeshy et al [6]
have analyzed the problem of boundary layer flow over a
stretching horizontal cylinder embedded in a porous medium.
They have considered the effects of thermal radiation, heat
transfer, and suction/injection. Abdul Rehman et al [7] have
given an analytic solution to the problem of, axisymmetric
Stagnation Flow of a Micropolar Fluid in a Moving Cylinder.
Haroon et al [8] have presented an investigation provides an
view in the steady, incompressible and electrically conducting
boundary layer flow of viscoelastic nanofluid flowing due to a
moving, linearly stretched surface. In this paper we present
a solution to the problem of a vertically moving cylinder
with nonlinear velocity. Analytic solution is given for the
case of linear velocity and a comparison between analytic
and numerical solutions is given in some cases to validate
the numerical method used in this paper.

Consider a steady incompressible laminar flow past a
moving cylinder. The cylinder is assumed to be semi-infinite
and vertical with radius R. A uniform transverse magnetic
filed with strength B0 is applied. We also assume that the
fluid properties are constant. The induced magnetic field is
neglected since we consider that the Reynolds number is
very small. Along the axis of the cylinder we measure the
axial coordinate x while the radial coordinate r is measured
normal to the axis of the cylinder. The external velocity is
taken in the form ue(x) = u∞(x

l
)n, where u∞ > 0. Such

assumptions along with the boundary layer approximation
results in the following governing equations:

∂ru

∂x
+
∂rv

∂r
= 0 (1)

u
∂u

∂x
+ v

∂u

∂r
=
ν

r

∂

∂r
(r
∂u

∂r
) + ue

due

dx
+

ν

κp
(ue − u) (2)

subject to the conditions:
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whereu and v are thevelocity componentsalong thedirections
of x and r respectively, ν is the kinematic viscosity, ρ is the
fluid density, and σ is the electrical conductivity of the fluid,
l is the characteristic length
and κp is the porosity of the medium. We define the stream
function ψ as

ru =
∂ψ
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, rv = −

∂ψ
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(4)
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Substituting from equation(4) into equations(1) and (2) we
find that equation(1) is satisfied identically and equation(2)
takes the form:
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and the conditions(3) are transformed into the form:
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we look for a solution in the form
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where f is the dimensionless stream function andη is the
similarity variable. Upon substituting in equations(5) and(6),
we get:
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The system(8)−(9) is transformed into a system of first order
differential equations through assuming that:y1 = f , y2 = f ′,
y3 = f ′′ to get

y′1(η) = y2(η) (10)

y′2(η) = y3(η) (11)

y′3(η) = y2(η) (12)
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× y2(η) − nǫ(1− (y22(η)) + κ(y2(η) − 1) (13)

subject to the initial conditions:

y1(0) = 0, y2(0) = a, y3(0) = s (14)

Suitable numerical values are given fora, n, κ, ǫ, andK. the
value ofs is priori unknown that is determined as part of the
solution. We use Mathematica to define a functionF [s] =
NDSolve[(10) − (14)]. The value ofs is obtained through
solving the equationy1(ηmax) = 1. A suitable start value of
η is taken and then increased to reachηmax for which the
difference between two successive values ofs is less than
10−7. So the problem now is an initial value problem which
is then solved usingNDSolve

Here we consider the casen = 1 which means that the
cylinder moves with linear velocity. Equation(8) takes the
form

(ηK+1)f ′′′(η)+(K+ǫf(η))f ′′(η)+ǫ(1−f ′2(η))−κ(f ′(η)−1) = 0

(15)
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.
We seek for an exact solution to the linear case in the form

f(η) = η + p+ qe−µη (17)

wherep, q, µ are constants andµ > 0. So

f ′(η) = 1− qµe−µη (18)

Applying the conditionsf(0) = 0, f ′(0) = a we find that

f(η) = η +
a− 1

µ
(1 − e−µη) (19)

the conditionf ′(∞) = 1 is satisfied identically which can be
observed from equation(18).
Substituting equation(19) into equation (15) we get the
following:

((ηK+1)µ2−µK−ηǫµ−2ǫ−κ)(a−1)−ǫ(a−1)2 = 0 (20)

Using the fact thata 6= 1 and equating the coefficients ofη
andη0, we get
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hence the exact solution of equation(15) is

f(η) = η +
(a− 1)k

ǫ
(1− e−

ǫ
K

η) (23)

whereκ is given by equation(22)

To validate the numerical method used in this paper we
compare the numerical solution with the exact one for the
casen = 1. Table 1 gives a comparison between the values
of f ′′(0) for K = 2, ǫ = 1 and different values ofa
Table 1:Values off ′′(0), whereK = 0.2, ǫ = 1
a Exact Solution Numerical Solution

1.2 -1 -1
1.5 -2.5 -2.5
2 -5 -5
3 -10 -10

The results shown in table 1 ensures that the numerical
method used in this paper is valid.

3. Results and Discussions 
3.1. Special Case: N = 1 

3.2. Validation of the Numerical Method 
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n = -0.3, -0.1, 0.1, 0.3

2 4
Η
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Fig. 1. Variation of the fluid velocity with the nonlinearity parameter n,
whereK = 2, a = 1.5, ǫ = 1, andκ = 1.

n 6= 1

Numerical solutions wheren 6= 1 are obtained using the
method described at the end of section 2.
The variations of the velocityf ′(η) with the similarity variable
η are plotted for different values of the considered parameters.
The figures (1-4) show that the fluid velocityf ′(η) decreases
with the increase ofη till it reaches the ambient fluid velocity
that is f ′(η) = 1. Figure 1 shows the variation off ′(η) for
different values of the parametern. From the figure one can
observe that asn elevates the value off ′(η) increases. since as
n increases the cylinder velocity increases which enforces the
fluid velocity to increase as shown in the figure. The variation
of the velocity f ′(η) with the permeability parameterκ is
shown in figure 2.κ plays a considerable role in controlling
the fluid velocity. The value ofκp is a measure of how it is
easy to penetrate the porous medium.κ is the reciprocal of
κp so the increase of the permeability parameterκ increases
the resistance to the fluid motion and consequently the fluid
velocity f ′(η) decreases which coincides with the results
shown in figure 2. The parameterǫ has a considerable effect
on the fluid velocity as depicted in figure 3. One can notice
that the decrease ofǫ = R

l
increases the fluid velocity. A

reasonable explanation of this is that the decrease ofR results
in decreasing the cylinder surface area, so the cylinder shrinks
and as a result the space provided for the fluid free stream
velocity increases. Thus the tendency of the fluid velocity to
be a free stream is enhanced. Figure 4 ensures the fact that as
the fluid velocity increases as the initial velocity increases.

An investigation of the problem of a boundary layer flow
over a vertical cylinder moving with nonlinear velocity is
given. An exact solution has been found for some special
cases. Similarity solution of the problem has been given and
the profiles of the fluid velocity have been plotted to show the
variation of the fluid velocity with the considered parameters.
The following results have been obtained:

Κ = 0 , 1, 2 , 3
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Fig. 2. Variation of the fluid velocity with the permeability parameterκ,
whereK = 2, a = 1.5, ǫ = 1, andn = 0.5.

Ε = 0.5 , 1, 1.5 , 2
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Fig. 3. Variation of the fluid velocity with the parameterǫ, where K = 2,
a = 1.5, n = 0.3, andκ = 1.

a = 1.2 , 1.5 , 1.7 , 2
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Fig. 4. Variation of the fluid velocity with the initial velocity parameter,
whereK = 0.2, n = 0.3, ǫ = 1, andκ = 1.

3.3. Case:

4. Conclusion 
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• The fluid velocity increases asn, the parameter of nonlin-
earity increases and as the fluid initial velocity increases
also.

• The fluid velocity decreases with the increase of the
permeability parameter as well as the cylinder radius.
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